Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation

نویسندگان

  • J. Carr
  • P. D’Odorico
  • K. McGlathery
  • P. Wiberg
چکیده

[1] Shallow coastal lagoons are environments where a dynamic equilibrium exists between water quality and seagrass cover. Dense seagrass canopies limit the resuspension of bed sediments thereby creating a clearer water column and a positive feedback for seagrass growth. Positive feedbacks are often associated with the existence of bistable dynamics in ecosystems. For example, a bare and a seagrass covered sediment bed could both be stable states of the system. This study describes a one‐dimensional hydrodynamic model of vegetation‐sediment‐water flow interactions and uses it to investigate the strengths of positive feedbacks between seagrass cover, stabilization of bed sediments, turbidity of the water column, and the existence of a favorable light environment for seagrasses. The model is applied to Hog Island Bay, a shallow coastal lagoon on the eastern shore of Virginia. The effects of temperature, eutrophication, and bed grain size on bistability of seagrass ecosystems in the lagoon are explored. The results indicate that under typical conditions, seagrass is stable in water depths < 2.2 m (51% of the bay bottom deep enough for seagrass growth) and bistable conditions exist for depths of 2.2–3.6 m (23% of bay) where the preferred state depends on initial seagrass cover. The remaining 26% of the bay is too deep to sustain seagrass. Decreases in sediment size and increases in water temperature and degree of eutrophication shift the bistable range to shallower depths, with more of the bay bottom unable to sustain seagrass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Feedbacks in Seagrass Ecosystems – Evidence from Large-Scale Empirical Data

Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosyst...

متن کامل

Wind-driven Sediment Suspension Controls Light Availability in a Shallow Coastal Lagoon

Light availability is critically important for primary productivity in coastal systems, yet current research approaches may not be adequate in shallow coastal lagoons. Light attenuation in these systems is typically dominated by suspended sediment, while light attenuation in deeper estuaries is often dominated by phytoplankton. This difference in controls on light attenuation suggests that phys...

متن کامل

Cross site analysis and synthesis of the role of vegetation, sediment supply, sea level rise and storminess on intertidal coastal geomorphology

Main Goals The proposed research focused on development of a cross site applicable model to Plum Island Ecosystems (PIE), Virginia Coast Reserve(VCR) and the Georgia Coastal Ecosystems (GCE) LTER sites in which the morphological co-evolution of the tidal basin and salt marsh is determined by site specific environmental drivers including tides, wind waves, sediment supply and sea level rise (SLR...

متن کامل

Benthic metabolism across a gradient of anthropogenic impact in three shallow coastal lagoons in NW Florida

Seagrasses are being lost at alarming rates worldwide, most often due to anthropogenic effects, but few reports have examined how seagrass loss affects the metabolism of coastal ecosystems. Here, we address this question by comparing both areal and system-integrated daytime benthic metabolic rates across 3 lagoons in the North Central Gulf of Mexico that display varying levels of abundance of t...

متن کامل

Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters

Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010